RESOURCES
FAQ
PRODUCTS
Flanges
Latest News
Selection of Valve Electric Actuator Models

Selection of Valve Electric Actuator Models

Sep 26,2022

Read More

Check Valves in LNG Cryogenic Service


Because natural gas is currently considered a good source of energy for both environmental and economic reasons, it's growing in use. 


As a result, the liquified natural gas (LNG) market also will see growth, which means more use of cryogenic valves. In the LNG industry, as well as some other cryogenic fields, the importance of check valves is indisputable.


HOW AND WHY THEY ARE USED


The cryogenic check valve is a critical component of the LNG supply chain. They have the sole purpose of directing fluids or gases in a single direction and preventing their reversal. One reason that's vital is that while LNG is a comparatively safe fuel, its vapors can pose a hazard if not properly contained.


Check valves are used throughout the process from conversion to storage to transport. All of these can be costly and inefficient if the right check valves are not used. Using the right engineered check valves, on the other hand, can help to ensure equipment is protected, productivity is maximized and operational safety is ensured.


Backflow prevention is needed in almost every piping system. Most of these pipelines use pumps or compressors to generate the required pressure for movement of fluids or gases. When this equipment stops, flow reversal or backflow can occur (depending on downstream pressures). One of the most significant elements of the cryogenic production system design is integrating a means to prevent this backflow.


Not only does this minimize damage equipment, it also ensures plant infrastructure is protected and emission leakage is kept to a minimum. For these reasons, engineered check valves are paramount across the value chain of LNG whether that's in the gas field, liquefaction plant, storage tank, tanker or gasification terminal. These valves not only offer solutions for mitigating the destructive effects of flow reversal, they also provide reliability in the severe conditions presented in cryogenic applications.


HOW THEY WORK


Check valves are totally different from shut-off and control valves. While those valves can stop flow completely, check valves allow the flow of fluid in a single direction. They are intended primarily to protect pumps, compressors, piping systems and other critical components from dangerous conditions such as system deceleration and water hammer. Additionally, unlike on/off valves, check valves are flow sensitive. They rely on the line fluid to open and close them, which means they are one of the few self-­automated valves.


To address these challenges, the industry has sought out alternative check valve solutions that incorporate features and benefits that can directly address and counter problems. For example, a highly engineered dual-plate wafer valve design is a stronger, lighter, smaller and more efficient check valve in common use in this field. Using springs to increase the valve reaction and provide more efficient response time (faster closing), this type of dual-plate check valve can better protect equipment already in place in the liquefaction and regasification terminals within an LNG processing plant. The lesser closing time can reduce the dynamic surge effect in the pipeline for an improved non-slam performance as well.


To address the extreme cryogenic demands of the liquification process, certain dual plate check valves have been approved for sub-atmospheric to cryogenic temperatures ranging from -58°F (-50°C) through -321°F (-161°C). These valves are wafer non-slam check valves that can be modified and sized for the specific application. Another alternative check valve is the non-slam nozzle-style, which can be specifically designed and sized for fast-reversing systems, again to protect against backflow concerns.


Also, for critical applications such as LNG, the internal geometry of check valves can be modified to suit the service conditions. A benefit of both the dual-plate and nozzle style check valves, for example, is the lack of a leak path to the atmosphere. Without this path, zero fugitive emissions escape for the life of the valve, and adjustments are not required.


Check valves typically have higher allowable leakage rates than isolation valves, but in cases where valuable equipment, pipes and other aspects of the plant's infrastructure need to be protected, a check valve that restricts backflow more efficiently will provide additional value in terms of protection for equipment, pipes and other aspects of the plant's infrastructure.


SIZING AND SELECTIONS


A concept not often understand about check valves is that the most critical time for them is during fluid deceleration. All valves need to close quickly to prevent reverse flow. Check valves are automatic in this process, and therefore susceptible to fluctuations in fluid flow. They require no outside stimulation and rely instead completely on the basic forces inside the valve, as well as external factors such as fluid type, temperature and more to determine when they will close. The actuator for these valve types, then, is the fluid system inside the pipe. The valves close only when the forward flow begins to decelerate below critical velocity. Because of this, varying internal system pressures can cause problems that influence check valve selection and functionality.


Knowledge of the process conditions for a particular application is also vital in determining proper valve size. Users must understand the process to select valves that can withstand those conditions. They include factors such as energy loss, pressure loss from friction and turbulence, flow coefficient and the Cv provided by the valve manufacturer. How a valve performs and holds up under these conditions and what is the listed service life, are key factors that must be considered before selecting a check valve for cryogenic applications. The total process system and its design must be part of the decision. Understanding what is needed, for how long, and under what conditions is paramount for safe and trouble-free performance.


In short, valve sizing and selection should consider valve material compatibility with the fluid medium, the valve rating (ASME pressure class), application flow, design and operating conditions, the installation requirements of a particular facility, line size, end connections, system modifications and proper leakage regulations.


MODELING


Most valves are not geometric models of each other. Because of this, to predict the performance of various valve sizes requires a thorough and comprehensive modeling program. Manufacturers should test various sizes of valves and then apply the modeling criteria to accurately predict the performance of other sizes.


The direct method to determine valve performance is a laboratory test. However, that might not be practical when the valve is too large, a multiplicity of variables might cause the test to take too long or the facilities are not available to do the right type of testing.


For example, wind tunnels have been used to predict performance using fixed and small objects. However, valves that have moving internal components could complicate such a modeling process. Predicting performance of large valves such as 48 or 72 inches is not practical unless a geometric model can be tested.


Valve characteristics in the modeling process may include resistance to flow, flow areas, component thickness and inertia, spring forces and loop flow.


STANDARDS


Many world organizations such as the International Organization for Standardization (ISO), British Standards (BS), the Manufacturers Standardization Society (MSS) and individual end users such as Shell, have published standards for the cryogenic industry as well as for LNG applications. These standards govern the performance of valves, and some have existed for many years.


Some standards recognize the big difference between metal-seated valves for isolation and metal-seated check valves for flow reversal control and allow a higher seat leak rate on metal-seated check valves. This type of leakage approach would make the valves less costly and still provide important back flow prevention.


Conclusion


Check valves play an important role in the protection of the expensive and critical equipment in liquefaction and regasification facilities. Their sole purpose of preventing the damaging effects reverse flow can have on equipment and on the safety of plant personnel make check valves a critical addition to any operation.


As cryogenic applications and the LNG industry continue to grow, so, too, will the prevalence of check valves. It is important to ensure that highly engineered solutions are in place. Dual-plate and nozzle-style valves offer some benefits over more traditional check valves so they have emerged as essential components within the value chain



Related News



Related Industrial Valves



Start Your Partnership With MstnLand

Start Your Partnership With MstnLand

Learn More